Four Flavors of Continuity

Here's a chart to help keep track of some of the different "flavors" of continuity in real analysis. Notice that the flavors vary according to $\delta$'s dependence on $\epsilon$, the point $x$, or the function $f$. 

 Explicitly, the definitions are give below. Let $X$ and $Y$ be metric spaces with metrics $d_X$ and $d_Y$, respectively.

  • Suppose $f:X\to Y$ is a function and fix $x_0\in X$. Then $f$ is continuous at $x_0$ if for each $x\in X$ and for each $\epsilon >0$ there is a $\delta>0$ such that $d_X(x,x_0)< \delta$ implies $d_Y(f(x),f(x_0))<\epsilon$.
  • Suppose $f:X\to Y$ is a function. Then $f$ is uniformly continuous if for each $\epsilon>0$ there is a $\delta>0$ such that $d_X(x_1,x_2)< \delta$ implies $d_Y(f(x_1),f(x_2))< \epsilon$ for all $x_1,x_2\in X$.
  • Let $\mathscr{F}$ be a collection of continuous functions $f:X\to Y$ and fix $x_0\in X$. Then $\mathscr{F}$ is equicontinuous at $x_0$ if for each $x\in X$ and for each $\epsilon>0$ there is a $\delta>0$ so that $d_X(x,x_0)< \delta$ implies $d_Y(f(x),f(x_0))<\epsilon$ for all $f\in\mathscr{F}$.
  • Let $\mathscr{F}$ be a collection of continuous functions $f:X\to Y$. Then $\mathscr{F}$ is uniformly equicontinuous if for each $\epsilon>0$ there is a $\delta>0$ so that $d_X(x_1,x_2)< \delta$ implies $d_Y(f(x_1),f(x_2))<\epsilon$ for all $x_1,x_2\in X$ and for all $f\in\mathscr{F}$.
Related Posts

Two Ways to be Small

The Back Pocket

English is Not Commutative

The Back Pocket

"Up to Isomorphism"?

The Back Pocket

Why are Noetherian Rings Special?

The Back Pocket
Leave a comment!