# The Yoneda Lemma

/Welcome to our third and final installment on the Yoneda lemma! In the past couple of weeks, we've slowly unraveled the mathematics behind the Yoneda perspective, i.e. the categorical maxim that

**an object is completely determined by its relationships to other objects.**

Last week we divided this maxim into two points:

**point #1**

Everything we need to know about X

is encoded in hom(--,X). In effect,

the object X **represents** the functor hom(--,X).

**point #2**

X and Y are isomorphic

*if and only if* their represented functors

hom(--,X) and hom(--,Y) are isomorphic.

*exactly one*natural transformation $\text{hom}(-,X)\to\text{hom}(-,Y)$, cooked up from $f$ itself. Conversely, if $\eta:\text{hom}(-,X)\to\text{hom}(-,Y)$ is any natural transformation, there is

*exactly one*morphism $X\to Y$ that's obtained from $\eta$ itself. And this is where we left off last time.

Now here's a simple - yet crucial - observation: notice

*the set $\text{hom}(X,Y)$ lies in the image of the functor $\text{hom}(-,Y):\mathsf{C}^{op}\to \mathsf{Set}$!*"But," you ask, "why is

*that*important?"

For any object $X$ in $\mathsf{C}$, natural transformations $\text{hom}(-,X)\to \text{hom}(-,Y)$ are in

bijection with elements in the set $\text{hom}(X,Y)$.

Pretty pithy, right? *And you know what's amazing? *

**It's true not only for functors of the form $\text{hom}(-,Y)$.
It's true for ALL functors from $\mathsf{C}^{op}$ to $\mathsf{Set}$.
ALL OF THEM!**

*that*is the Yoneda lemma.

## The Yoneda Lemma

**The Yoneda Lemma:**For any functor $F:\mathsf{C}^{op}\to\mathsf{Set}$ and any object $X$ in $\mathsf{C}$, natural transformations $\text{hom}(-,X)\to F$ are in bijection with elements in the set $F(X)$. That is, $$\mathsf{Nat}(\text{hom}(-,X),F)\cong F(X).$$

Do you see the import here? The set of natural transformations $\text{hom}(-,X)\to F$ could be *m-a-s-s-i-v-e*, a dense forest of unknowable, untamable, and frankly unhelpful weeds. "Except," the Yoneda lemma tells us, "*it's not*!" The *only* natural transformations that exist are those which can be cooked up from elements in the set obtained by evaluating $F$ at the object of interest, $X$.

Given an element $x\in F(X)$, define $\eta:\text{hom}(-,X)\to F$ by declaring $\eta_Y:\text{hom}(Y,X)\to F(Y)$ to be the morphism that sends a map $g:Y\to X$ to the element $Fg(c)$ in $F(Y)$. (Here, $Fg$ denotes the image of $g$ under $F$.)

It remains to check that these assignments really are inverses of each other (and that $\eta$ is a bona fide natural transformation). But as Tom Leinster once said, "To understand the question is very nearly to know the answer... there is only one possible way to proceed."

An immediate consequence of the Yoneda lemma is the content of last week's discussion:## First Corollary (Point #1)

**Corollary 1:**The Yoneda embedding $\mathscr{Y}:\mathsf{C}\to\mathsf{Set}^{\mathsf{C}^{op}}$ is fully faithful.

To see this, set $F=\text{hom}(-,Y)$ in the statement of the lemma. Then we have a bijection $$\mathsf{Nat}(\text{hom}(-,X),\text{hom}(-,Y))\cong \text{hom}(X,Y) .$$ Now suppose $\eta:\text{hom}(-,X)\to\text{hom}(-,Y)$ is any natural transformation. We need to show the existence of a morphism $f:X\to Y$ so that $\eta=f_*$. Here, "$\eta=f_*$" means that for every object $W$ in $\mathsf{C}$ and for any map $g:W\to X$, $$\eta_W(g)=f\circ g.$$ So what should the map $f$ be? There's really only one choice! According to the Yoneda lemma, $\eta$ gives rise to exactly one morphism $\eta_X(\text{id}_X):X\to Y$. So let's choose that one! That is, $$\text{let }\; f:=\eta_X(\text{id}_X).$$ Now we just need to verify that this works. But by definition, the phrase "$\eta$ is a natural transformation" means for any pair of objects $Z,W\in\mathsf{C}$ and for any map $g:W\to Z$ we have the equality $\eta_W\circ g^*=g^*\circ\eta_Z,$ which is to say, for any $h:Z\to W$, $$\eta_W(h\circ g)=\eta_Z( h)\circ g$$

*for all*$Z$ and $h$, it holds in the special case when $Z=X$ and $h= \text{id}_X\in \text{hom}(X,X)$. Now the naturality condition gives us exactly what we want: $\eta_W(g)=fg$ for all $g:W\to X$. And hence $\eta = f_*$.

*contravariant*version of the Yoneda embedding (and a version of the Yoneda lemma for

*covariant*functors $F$) and so there's an analogous "Corollary 1" with $\text{hom}(-,X)$ replaced by $\text{hom}(X,-)$. But the essence is the same - $X$ is determined by is relationships to other objects.

Better yet, it is

*completely*determined by its relationships to other objects. The word "completely" is given to us by point #2 mentioned above, which is actually a second corollary of the Yoneda lemma.

## Second Corollary (Point #2)

**Corollary 2:**$X\cong Y$ if and only if $\text{hom}(-,X)\cong\text{hom}(-,Y)$.

*all*spaces gives us

*all*information.

*out of*$X$ provides useful information, too. For instance, $X$ is connected if and only if every map $X\to \{0,1\}$ is constant. Interestingly enough, if we consider the same set $\{0,1\}$ endowed with the Sierpinski topology, then (as we've seen before) the set $\text{hom}(X,\{0,1\})$ captures the full topology on $X$. Further, maps - when considered

*up to homotopy*- from $X$ to an Eilenberg-MacLane sapce give rise to the homology groups of $X$. On the other hand, homotopy classes of maps from the $n$-sphere into $X$ form the homotopy groups of $X$. The heavy emphasis on morphisms is really a consequence of the Yoneda perspective (and hence the Yoneda lemma);

*it's all about relationships!*

I'd like to close this series with one more example. The Yoneda lemma is sometimes described as a generalization of Cayley's theorem from group theory. And rightly so. We can use the Yoneda lemma to *prove* Cayley's theorem.

## Cayley's theorem: a proof

*itself*viewed as a right $G$-set. Then according to the Yoneda lemma, we have a bijection

But *which* $G$-equivariant functions are they? According to the bijection in Corollary 1, they are constructed from elements in $G$. In short, the set $\mathsf{Nat}(\hom(\bullet,\bullet),\hom(\bullet,\bullet))$ is nothing more than the set of all functions $f_g:G\to G$ defined by $x\mapsto xg$. And these are *precisely* automorphisms of $G$ that arise from multiplication by a fixed element!

## Further Reading

If you enjoyed the "probing objects with other objects" idea, you'll be happy to know that it's part of a

*philosophy of generalized points*. For more, check out Leinster's Doing Without Diagrams and William Lawvere's An Elementary Theory of the Category of Sets (the 2005 version).

Finally, there's a neat result called the density theorem (e.g. Theorem 6.5.8 here) that tells us every functor $F:\mathsf{C}^{op}\to\mathsf{Set}$ is really

*built up*from the represented functors $\text{hom}(-,X)$. Formally, every such $F$ is a colimit of certain $\text{hom}(-,X)$. This is really a fantastic result (and has wonderful mathematics - like Kan extensions! - behind it). But I'll postpone the discussion - we haven't talked about colimits or limits!

Yet.

*Proof.*Suppose $h:F(X)\to F(Y)$ is an isomorphism with inverse $h^{-1}$. Because $F$ is fully faithful, there is a unique morphism $f:X\to Y$ so that $Ff=h$. Similarly, there is a unique morphism $g:Y\to X$ so that $Fg=h^{-1}$. Then $\text{id}_{F(X)}=h^{-1}\circ h=Fg\circ Ff=F(fg)$. But $F(\textit{id}_X)$ also maps to $\text{id}_{F(X)}$. Therefore, $fg=\textit{id}_X$ since $F$ is faithful. A similar argument shows $gf=\textit{id}_Y$ and so $f$ is an isomorphism.

IN THIS SERIES