On Constructing Functions, Part 3

This post is the third example in an ongoing list of various sequences of functions which converge to different things in different ways.

Also in this series:

Example 1: converges almost everywhere but not in $L^1$
Example 2: converges uniformly but not in $L^1$
Example 4: $f_n$ are integrable and converge uniformly to $f$, yet $f$ is not integrable
Example 5: converges pointwise but not in $L^1$
Example 6: converges in $L^1$ but does not converge anywhere  

Example 3

A sequence of continuous functions $\{f_n:\mathbb{R}\to[0,\infty)\}$ which converges to 0 in the $L^1$ norm, but does not converge to 0 uniformly.

There are four criteria we want our functions to satisfy:  

1. First off is the uniform convergence. Observe that "$\{f_n\}$ does not converge to 0 uniformly" can mean one of three things:

  • converges to 0 pointwise only
  • converges to something other than 0 (pointwise or uniformly)
  • does not converge at all

So it's up to you to decide which one feels more comfortable to work with. Here we'll choose the second option.

2. Next, "$\{f_n\}$ converges to 0 in the $L^1$ norm" means that we want to choose our sequence so that the area under the curve of the $f_n$ gets smaller and smaller as $n\to\infty$.

3. Further, we also want the $f_n$ to be positive (the image of each $f_n$ must be $[0,\infty)$) (notice this allows us to remove the abosolute value sign in the $L^1$ norm: $\int|f_n| \Rightarrow \int f_n$)

4. Lastly, the functions must be continuous.

A slick* but very simple solution is a sequence of triangles of decreasing area with height 1!

This works because: At $x=0$, $f_n(x)=1$ for all $n$, so there's no way it can converge to zero (much less uniformly). In fact we have $f_n\to f$ pointwise where $$f(x)=\begin{cases} 1, &\text{if $x=0$}\\ 0 &\text{otherwise}. \end{cases}$$ The area of each triangle is $\frac{1}{n}$ which clearly goes to zero for $n$ large. Also, it's clear to see visually that the area is getting smaller. This guarantees $f_n\to 0$ in the $L^1$ norm. Further, each $f_n$ is positive since we've defined it to equal zero as soon as the edges of the triangle reach the $x$-axis. And lastly we have piecewise continuity.

The details: Let $\epsilon>0$ and $x\in \mathbb{R}$. If $x=0$, then $f_n(x)=1$ for all n and so $f_n\to 1$. Otherwise $x>0$ or $x< 0$ If $x>0$ and $x>1$, then $f_n(x)=0$ for all $n$. Otherwise if $x\in(0,1]$ choose $N>\frac{1}{x}$. Then whenever $n>N$ we have $f_n(x)=1-nx< 1-\frac{1}{x}x=0< \epsilon.$ The case when $x< 0$ follows a similar argument.

 Lastly $f_n\to 0$ in the $L^1$ norm since, as we mentioned, the areas are decreasing to 0. Explicitly:  $$\int_{\mathbb{R}}|f_n| = \int_{-\frac{1}{n}}^0 1+nx + \int_0^{\frac{1}{n}}1-nx = \frac{2}{n}\to 0.$$

*I can brag because this particular example came from a friend. My own attempt at a solution was not nearly as intuitive.

Related Posts

Absolute Continuity (Part Two)

Analysis

Four Flavors of Continuity

The Back Pocket

Absolute Continuity (Part One)

Analysis

One Unspoken Rule of Measure Theory

The Back Pocket
Leave a comment!