On Constructing Functions, Part 6

This post is the sixth example in an ongoing list of various sequences of functions which converge to different things in different ways.

Also in this series:

Example 1: converges almost everywhere but not in $L^1$
Example 2: converges uniformly but not in $L^1$
Example 3: converges in $L^1$ but not uniformly
Example 4: converges uniformly, but limit function is not integrable
Example 5: converges pointwise but not in $L^1$    

Example 6

A sequence of measurable functions $f_n:[0,1]\to [0,1]$ such that $ f_n\to 0$ in $L^1$ but for no $x\in[0,1]$ does $f_n$ converge.

(Above, [ - ] denotes the greatest integer function.)

This works because: The $f_n$ are measurable since we know $\int f_n$ is just the area of each rectangle, and that area is just $\frac{1}{2^k}=\frac{1}{2^{[\log_2(n)]}}$ which goes to zero as $n\to\infty$. Since the rectangles not only shrink in width but also "slide" continuously throughout $[0,1]$ (kind of Pac-Man-like, the bases cover $[0,1]$ over and over again), there isn't a single $x\in[0,1]$ so that the $f_n$ converge at $x$.

(See Real Analysis by Gerald Folland, p. 60.)

Related Posts

Automorphisms of the Unit Disc


Three Important Riemann Surfaces


Two Ways to be Small

The Back Pocket

Stone Weierstrass Theorem

Leave a comment!